- Home
- Search Results
- Page 1 of 1
Search for: All records
-
Total Resources1
- Resource Type
-
0000000001000000
- More
- Availability
-
10
- Author / Contributor
- Filter by Author / Creator
-
-
Bauer, A (1)
-
Rolland, J (1)
-
Takaki, N (1)
-
#Tyler Phillips, Kenneth E. (0)
-
#Willis, Ciara (0)
-
& Abreu-Ramos, E. D. (0)
-
& *Soto, E. (0)
-
& Abramson, C. I. (0)
-
& Abreu-Ramos, E. D. (0)
-
& Adams, S.G. (0)
-
& Ahmed, K. (0)
-
& Ahmed, Khadija. (0)
-
& Aina, D.K. Jr. (0)
-
& Akcil-Okan, O. (0)
-
& Akuom, D. (0)
-
& Aleven, V. (0)
-
& Andrews-Larson, C. (0)
-
& Archibald, J. (0)
-
& Arnett, N. (0)
-
& Arya, G. (0)
-
- Filter by Editor
-
-
& Spizer, S. M. (0)
-
& . Spizer, S. (0)
-
& Ahn, J. (0)
-
& Bateiha, S. (0)
-
& Bosch, N. (0)
-
& Brennan K. (0)
-
& Brennan, K. (0)
-
& Chen, B. (0)
-
& Chen, Bodong (0)
-
& Drown, S. (0)
-
& Ferretti, F. (0)
-
& Higgins, A. (0)
-
& J. Peters (0)
-
& Kali, Y. (0)
-
& Ruiz-Arias, P.M. (0)
-
& S. Spitzer (0)
-
& Sahin. I. (0)
-
& Spitzer, S. (0)
-
& Spitzer, S.M. (0)
-
(submitted - in Review for IEEE ICASSP-2024) (0)
-
-
Have feedback or suggestions for a way to improve these results?
!
Note: When clicking on a Digital Object Identifier (DOI) number, you will be taken to an external site maintained by the publisher.
Some full text articles may not yet be available without a charge during the embargo (administrative interval).
What is a DOI Number?
Some links on this page may take you to non-federal websites. Their policies may differ from this site.
-
When leveraging orthogonal polynomials for describing freeform optics, designers typically focus on the computational efficiency of convergence and the optical performance of the resulting designs. However, to physically realize these designs, the freeform surfaces need to be fabricated and tested. An optimization constraint is described that allows on-the-fly calculation and constraint of manufacturability estimates for freeform surfaces, namely peakto- valley sag departure and maximum gradient normal departure. This constraint’s construction is demonstrated in general for orthogonal polynomials, and in particular for both Zernike polynomials and Forbes 2D-Q polynomials. Lastly, this optimization constraint’s impact during design is shown via two design studies: a redesign of a published unobscured three-mirror telescope in the ball geometry for use in LWIR imaging and a freeform prism combiner for use in AR/VR applications. It is shown that using the optimization penalty with a fixed number of coefficients enables an improvement in manufacturability in exchange for a tradeoff in optical performance. It is further shown that, when the number of coefficients is increased in conjunction with the optimization penalty, manufacturability estimates can be improved without sacrificing optical performance. © 2019 Optical Society of America under the terms of the OSA Open Access Publishing Agreementmore » « less
An official website of the United States government
